Uncertainty principles and optimally sparse wavelet transforms

نویسندگان

  • Ron Levie
  • Nir A. Sochen
چکیده

In this paper we introduce a new localization framework for wavelet transforms, such as the 1D wavelet transform and the Shearlet transform. Our goal is to design nonadaptive window functions that promote sparsity in some sense. For that, we introduce a framework for analyzing localization aspects of window functions. Our localization theory diverges from the conventional theory in two ways. First, we distinguish between the group generators, and the operators that measure localization (called observables). Second, we define the uncertainty of a signal transform based on a window as a whole, instead of defining the uncertainty of an individual window. We show that the uncertainty of a window function, in the signal space, is closely related to the localization of the reproducing kernel of the wavelet transform, in phase space. As a result, we show that using uncertainty minimizing window functions, results in representations which are optimally sparse in some sense.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Contrast Enhancement for Remote Sensing Images

This paper presents an optimal contrast enhancement approach for remote sensing images based on dominant brightness level analysis and adaptive intensity transformation for remote sensing images. The proposed system first perform discrete wavelet transform (DWT) on the input images and then split the LL sub band into low-, middle-, and high-intensity layers using the logaverage luminance. The k...

متن کامل

Classical Wavelet Transforms over Finite Fields

This article introduces a systematic study for computational aspects of classical wavelet transforms over finite fields using tools from computational harmonic analysis and also theoretical linear algebra. We present a concrete formulation for the Frobenius norm of the classical wavelet transforms over finite fields. It is shown that each vector defined over a finite field can be represented as...

متن کامل

Numerical stability of fast trigonometric and orthogonal wavelet transforms

Fast trigonometric transforms and periodic orthogonal wavelet transforms are essential tools for numerous practical applications. It is very important that fast algorithms work stable in a floating point arithmetic. This survey paper presents recent results on the worst case analysis of roundoff errors occurring in floating point computation of fast Fourier transforms, fast cosine transforms, a...

متن کامل

New Uncertainty Principles for the Continuous Gabor Transform and the Continuous Wavelet Transform

Abstract. Gabor and wavelet methods are preferred to classical Fourier methods, whenever the time dependence of the analyzed signal is of the same importance as its frequency dependence. However, there exist strict limits to the maximal time-frequency resolution of these both transforms, similar to Heisenberg’s uncertainty principle in Fourier analysis. Results of this type are the subject of t...

متن کامل

Second Generation Curvelet Transforms Vs Wavelet transforms and Canny Edge Detector for Edge Detection from WorldView-2 data

Edge detection is an important assignment in image processing, as it is used as a primary tool for pattern recognition, image segmentation and scene analysis. Simply put, an edge detector is a high-pass filter that can be applied for extracting the edge points within an image. Edge detection in the spatial domain is accomplished through convolution with a set of directional derivative masks in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1707.04863  شماره 

صفحات  -

تاریخ انتشار 2017